
Code Artificiality: A Metric for the Code Stealth
Based on an N-gram Model

Yuichiro Kanzaki
National Institute of Technology

Kumamoto College
Koshi, Kumamoto, Japan

kanzaki@kumamoto-nct.ac.jp

Akito Monden
Nara Institute of Science and Technology

Ikoma, Nara, Japan
akito-m@is.naist.jp

Christian Collberg
University of Arizona
Tucson, Arizona, USA
collberg@gmail.com

Abstract—This paper proposes a method for evaluating the
artificiality of protected code by means of an N-gram model.
The proposed artificiality metric helps us measure the stealth of
the protected code, that is, the degree to which protected code can
be distinguished from unprotected code. In a case study, we use
the proposed method to evaluate the artificiality of programs
that are transformed by well-known obfuscation techniques.
The results show that static obfuscating transformations (e.g.,
control flow flattening) have little effect on artificiality. However,
dynamic obfuscating transformations (e.g., code encryption), or
a technique that inserts junk code fragments into the program,
tend to increase the artificiality, which may have a significant
impact on the stealth of the code.

I. INTRODUCTION

To date, attacks by an end user who attempts to obtain
security-sensitive information in software products, called
man-at-the-end (MATE) attacks, have been creating a serious
threat to software industry. In order to protect software against
such attacks, various methods for protecting software, such
as program obfuscation and program encryption, have been
proposed [1].

Assuming that the adversary goes through a typical locate-
alter-test cycle [1], the stealth of the protected code, that
is, the degree to which protected code can be distinguished
from unprotected code, has a large effect on the strength
of the protection. For instance, let us consider a scenario in
which a conditional branch of software needs to be protected
against adversaries, and the part of a binary machine code
is encrypted. In such case, adversaries can easily determine
that this encrypted part is not in its original form, because
the code will now include many unusual instructions. Such
unstealthy code can expose the protected (secret) part of the
program, giving adversaries a significant clue to its location.
As a result, the protected code can drastically reduce the effort
that adversaries will have to invest for the attack.

In spite of the fact that it is very important to evaluate
the stealth of the protected code, the method for evaluat-
ing the code stealth is sorely lacking. Thus, in this paper,
we propose a metric for measuring code stealth. There are
many factors causing decrease of code stealth, which include
artificial code and unusual behavior. Artificial code is code
that does not resemble raw compiled code such as encrypted
code mentioned earlier. Unusual behavior is the behavior that

rarely appears in common software. Examples include self-
modification techniques, often used by dynamic obfuscation.

As a first step in evaluating code stealth, in this paper, we
propose a method to quantitatively evaluate the artificiality
of the protected code by means of an N-gram model. We
exploit the N-gram model, which is constructed based on a
large assembly code corpus, to compute the likelihood estimate
for a given assembly code fragment. In a case study, we use
the proposed method to evaluate the artificiality of a DRM
player routine that is transformed by well-known obfuscation
techniques, and discuss the stealth of the routine.

II. CODE ARTIFICIALITY

A. Definition: code

In this paper, we use code to mean the whole or part
of the program that is described in assembly code. Code
is represented as a sequence of assembly instructions. A
sequence of n assembly instructions i1i2 . . . in is represented
as in1 .

The example code that appears in this paper is written in
the x86 assembly language [2] using Intel syntax.

B. Definition: artificiality

N-gram models, which are widely used in speech and nat-
ural language processing, are used to compute the probability
of a sequence of words in the form of an (N-1)-order Markov
model. In this study, we use an N-gram model to compute a
probability of occurrence of a given code fragment using a
corpus made up of a collection of software programs.

P (in1), the probability of a sequence of instructions in1 =
i1i2 . . . in, is computed as follows [3]:

P (in1) ≈
n∏

k=1

P (ik|ik−1
k−N+1) (1)

The probability of ik (the kth instruction) only depends
on the previous (N-1) instructions ik−N+1 . . . ik−2ik−1. We
consider a lower probability P (in1) to imply a more artificial
sequence of instructions.

A(C) is the artificiality of the code C that consists of in1 =
i1i2 . . . in. It is defined as follows:

Artificiality A(C) = −log10P (in1) (2)

The probability is estimated using a corpus of assembly
code. P (ik|ik−1

k−N+1) can be computed from the maximum
likelihood estimation [3]:

P (ik|ik−1
k−N+1) =

F (ikk−N+1)

F (ik−1
k−N+1)

(3)

where F (iqp) is the number of iqp in the corpus. We use
a smoothing method, such as absolute discounting [3], to
account for sparse data.

III. CASE STUDY

A. Overview

We conducted a case study to evaluate the artificiality of
programs obfuscated by methods described in the literature.
The N-gram model was constructed using 2,030 open source
software applications (e.g., editors, compilers, and games).
They were obtained from the collection of applications in
Cygwin [4]. These executables are written in PE (Portable
Executable) format, and run on the x86 architecture. The size
of them extends from 2KB to 17MB. The main resource of this
corpus is the list of opcodes of assembly instructions stored
in the .text section (which holds the program code). The
assembly instructions are obtained by objdump [5], which
uses the linear sweep technique. In this study, only instruction
opcodes were collected; in future work we intend to also take
operands into account.

We built and applied the N-gram model using SRILM
toolkit [6]. TABLE I shows the ten most frequent N-grams
(N is varied from 1 to 3) that appeared in the constructed
corpus. The values in the table show the ratio of the N-gram’s
frequency to the total frequency. We can see that the N-grams
that include mov occur at a high frequency in the corpus,
regardless of N .

The target code is a simple DRM player module (hereafter
called the player module), which is described in [1]. The
player module has two routines: license checking and
decryption. License checking is performed by a simple condi-
tional branch. The decryption routine is applied to encrypted
media by means of an XOR operation with a user key and an
internal player key. A sample code of the player module in
the C language is shown in Fig. 1.

TABLE I
FREQUENT N-GRAMS IN THE CORPUS

1-gram 2-gram 3-gram
1 mov 44.6 mov-mov 25.0 mov-mov-mov 15.0
2 call 7.56 mov-call 6.85 mov-mov-call 4.97
3 lea 4.77 call-mov 4.24 mov-call-mov 3.87
4 cmp 3.94 lea-mov 2.58 call-mov-mov 2.54
5 je 3.76 nop-nop 2.36 nop-nop-nop 1.86
6 test 3.64 je-mov 2.15 lea-mov-mov 1.53
7 add 3.56 mov-test 1.67 test-je-mov 1.15
8 jmp 3.46 mov-lea 1.66 mov-lea-mov 1.13
9 nop 3.38 test-je 1.66 je-mov-mov 1.11
10 push 2.62 jmp-mov 1.46 mov-test-je 0.94

The values show the ratio of the frequency to the total frequency[%].

int play(unsigned int user_key,
unsigned int encrypted_media[],
int media_len) {

int i, code;
printf("Please enter activation code: ");
scanf("%d", &code);
if (code!=ACTIVATION_CODE) {
fprintf(stderr, "%s!\n", "wrong code");
return -1;

}

*key = user_key ˆ player_key;
for(i=0; i<media_len; i++) {
unsigned int decrypted =

*key ˆ encrypted_media[i];
fprintf(audio, "%x\n", decrypted);
fflush(audio);

}
return 0;

}

Fig. 1. Sample code of player module

B. Evaluation Targets

TABLE II shows an overview of the evaluation targets
in this case study. Each code was obtained by obfuscating
or optimizing the original code Co. We first compiled the
transformed code into the executable, and then disassembled
the player module portion. In TABLE II, the term static
obfuscation means a technique that transforms the code prior
to execution, whereas dynamic obfuscation means one that
transforms the code at run-time. The instructions (opcodes) for
each code appear in the corpus. The obfuscated programs were
transformed manually except for Cenca and Cencd , which were
automatically transformed by the Tigress obfuscation tool [11],
[14]. A portion of our experimental data (e.g., the target code
and their dump data) is available from our website1.

Details of the evaluation targets are described below:

Copt1 , Copt2 , Copts: Code optimization

Copt1 , Copt2 and Copts are optimized versions of Co, and
these are not obfuscated at all. Specifically, the executables of
Copt1 , Copt2 , and Copts are obtained by applying GCC (the
GNU Compiler Collection) optimization options [7] of -O1,
-O2, and -Os, respectively. Copt1 is optimized using simple
operations that do not require much compilation time. Copt2

is optimized with nearly all supported optimizations that do
not involve a space-speed tradeoff. Copts is optimized using
operations that do not typically increase the code size, as well
as further optimizations designed to reduce the code size. Co,
which is compiled with -O0, is not optimized at all.

Crep: Replacing with fundamental instructions

Crep is transformed by the obfuscation method proposed
in [8]. This method replaces complicated instructions in the

1http://www.hi.kumamoto-nct.ac.jp/∼kanzaki/stealth/SPRO2015/

TABLE II
LIST OF EVALUATION TARGETS

Name Transformation type # of opcodes Outline
Co — 60 Original code (without optimization)
Copt1 60 Optimization with gcc -O1 [7]
Copt2 Optimization 64 Optimization with gcc -O2 [7]
Copts 58 Optimization with gcc -Os [7]
Crep

Static obfuscation

83 Replace with fundamental instructions [8]
Cinter 281 Embedding a specialized interpreter [1]
Cflat 86 Control flow flattening [9]
Cjunk 85 Insertion of junk bytes [10]
Cenca 151 Encoding arithmetic [11]
Cencd 124 Encoding data [11]
Ccamf 79 Instruction camouflage with instruction selected from the corpus [12]
Ccamfs 79 Instruction camouflage with instruction selected from Co [12]
Cswap Dynamic obfuscation 227 Swapping code fragments [13]
Ccrypt 267 Swapping code fragments with code encryption [13]
Caes 117 Simple encryption using AES

lea eax, [ebp-4]
mov [esp+4], eax
mov [esp], LC1
call scanf

mov eax, ebp
add eax, -4
mov [esp+4], eax
mov [esp], LC1
add esp, -4
mov [esp], R1
jmp scanf

R1:

(a) original code (b) obfuscated code

Fig. 2. Example of obfuscation using fundamental instructions

code with fundamental instructions (e.g., mov and add), so
that the code consists solely of simple instructions. This makes
it more difficult to understand than the original.

Fig. 2 shows an example of obfuscation using fundamental
instructions. In this example, lea is replaced with mov and
add, call is replaced with add, mov, and jmp. Crep is
transformed so that the code consists only of these fundamen-
tal instructions.

Cinter : Embedding a specialized interpreter

Cinter is transformed by the obfuscation method proposed
in [1]. The method embeds a specialized interpreter in the
code, and the program is rewritten based on a customized
instruction set architecture. This technique makes it harder for
the adversary to design an automated attack that removes the
layer of interpretation. Cinter has an interpreter engine, and the
entire program (player module) is written in its customized
instructions.

Cflat : Control flow flattening

Cflat is transformed by the obfuscation method proposed
in [9]. This removes the control flow structure (e.g., the nesting
of loops and conditional statements) by flattening the control
flow graph.

Fig. 3 shows an example of a flattened program (written in
the C language). The control flow of the original program is
as follows:

n=0

switch(n)

B0

scanf("%d,&code);
n=1;

if(code==42)
 n=2;
else
 n=3;

return -1; puts("OK");

B1 B2 B3

Fig. 3. Example of flattened program

1) B0 is executed.
2) B1 is executed.
3) B2 or B3 is executed according to the result of the

conditional branch B1.

In the obfuscated code, the control flow is flattened using the
switch statement and variable n. The control flow in Cflat

is flattened using this method.

Cjunk : Insertion of junk bytes

Cjunk is the result of inserting junk bytes into Co. Junk
bytes are instructions that have no semantic impact on the
program. We transform the conditional jump instructions (e.g.,
jne) using a branch flipping technique [10], and insert
junk bytes in the region that is not actually executed. The
inserted junk bytes make the program difficult to understand
and disassemble. All conditional jump instructions in Cjunk

are transformed, and junk bytes inserted. Each junk byte is
randomly selected from Co.

Cenca : Encoding arithmetic

Cenca is transformed by the encoding method, which is in-
troduced in [11]. This method replaces integer arithmetic with
more complex expressions. The idea is based on a technique
which is introduced in Hacker’s Delight [15]. Fig. 4 shows an
example of obfuscation using this method. In this example,
addition operations are replaced with complex expressions

z = x + y + w;

(a) original code

z = (((x ˆ y) + ((x & y) << 1)) | w) +
(((x ˆ y) + ((x & y) << 1)) & w);

(b) obfuscated code

Fig. 4. Example of encoding arithmetic

int c = 42;
if (x == c) ..

(a) original code

int c = 1848620654;
if (x == -1492092953 * c - 3283795736U) ..

(b) obfuscated code

Fig. 5. Example of encoding data

using XOR, OR, AND and shift operators. In Cenca , all integer
arithmetic expressions are obfuscated by this method.

Cencd : Encoding data

Cencd is transformed by the data encoding method which is
introduced in [11]. This method encodes integer variables in
the program so that they have a non-standard data represen-
tation. The real value of the target variable is replaced with
a different integer value, and the real value will be revealed
only when needed (e.g., when the value is needed to be
output). Fig. 5 shows an example of obfuscation using this
method. In this example, the real value of c (42) is hidden
using this method. In Cencd , the integer variables key and
ACTIVATION_CODE (see Fig. 1) are encoded by this method.

Ccamf , Ccamfs : Instruction camouflage

Ccamf and Ccamfs are camouflaged by the method proposed
in [12]. Some code fragments in the program are overwritten
with dummy instructions, making the original program harder
to understand. The program is self-modifying, automatically
replacing the dummy instructions with the original ones.

Fig. 6 shows an example of a camouflaged program. In
this example, jge (its binary code is 0x7d) is overwritten
(camouflaged) with je (its binary code is 0x74). The dummy
instruction je is restored to the original instruction jge at
run-time by “mov BYTE [T1], 0x7d”.

All of the call, cmp, and conditional jump instructions
in Ccamf and Ccamfs are camouflaged. The routines which
restore the instructions are placed outside player module.
The dummy instructions in Ccamf are randomly selected from
the instructions that appear in the corpus, whereas the dummy
instructions in Ccamfs are randomly selected from those in Co.

Cswap , Ccrypt : Swapping code fragments

Cswap and Ccrypt are transformed by the obfuscation
method proposed in [13]. This method splits the program

pop edx
cmp esi, edi
jge L1
mov eax, [ebp+12]

mov BYTE [T1], 0x7d
:

pop edx
cmp esi, edi

T1:
je L1
mov eax, [ebp+12]

:
mov BYTE [T1], 0x74

(a) original code (b) camouflaged code

Fig. 6. Example of camouflaged code

B2

B1

B0

B3

B4

B5

C2:

C1:

C0:

C3:

C4:

C5:

B3

B0

C2:

C1:

C0:

B2

B5

C3:

C4:

C5:

upper

lower

B4⊕B5

B0⊕B1

(a) original fragments (b) obfuscated fragments

Fig. 7. Example of swapping pieces

into code fragments called cells, and runs the cells in order,
XORing them with each other. An adversary can only obtain
those code fragments that are in cleartext.

Fig. 7 shows an example of the obfuscated program. The
original program is split into six cells C0, C1, . . ., C5, and each
cell has the original block B0, B1, . . ., B5 (Fig. 7 (a)). The
cells in the obfuscated program are divided into two regions
in memory, upper and lower (Fig. 7 (b)). When the program
is executed, each cell in upper memory is XORed with a
cell in lower memory, so that the original behavior will be
performed. At each point during execution, some cells will be
in cleartext while others will be hidden. The entire code of
Cswap is obfuscated by the method described above. Ccrypt is
obfuscated by an extended method, which is combined with
an encryption technique to make more of the cells unreadable.

Caes : Simple encryption using AES

Caes is encrypted by means of the AES (Advanced Encryp-
tion Standard) algorithm. The entire code is overwritten with
data obtained by encrypting the original machine code. The
original code of Caes is obtained at run-time by a decryption
routine using the self-modifying technique. The decryption
routine itself is located outside of Caes and is executed before
Caes is called. The disassembled code of Caes is meaningless
as machine code, because Caes is just encrypted data.

C. Results

We constructed the N-gram model and measured the ar-
tificiality of each target code described in Section III-B. N
was varied from 1 to 3. The results are shown in Fig. 8. The
artificiality of the optimized code Copt1 , Copt2 , and Copts

is similar to that of the original code Co. In contrast, the
artificiality of Cinter , Cswap , Ccrypt , and Caes are very high.

Fig. 9 shows the artificiality of each evaluation target in
the case N = 3. The vertical axis represents the artificiality,

Co Copt1 Copt2 Copts Crep Cinter Cflat Cjunk Cenca Cencd Ccamf Ccamfs Cswap Ccrypt Caes

0

100

200

300

400

500

A
rt
if
ic
ia
lit
y

N=1

N=2

N=3

Fig. 8. Results for the artificiality of the target code

��

�����

�����

�����

����

�	
��

�	
���

��
�

���
�

�
��

�	����

�����

�����

�����

������

�

��

���

���

���

���

���

���

���

�� �� �� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ���

�
��
��
��
��
��
�	

���������	�
��
�
���

	
������
�
�������

	
����������
�������

	 ����������
�� �����

Fig. 9. Relation between the artificiality and the number of opcodes (N = 3)

and the horizontal axis represents the number of opcodes
(the length of the code fragment). For comparison, we also
examined the average (Acorpus) and the standard deviation
(σ) of the artificiality values of unobfuscated code samples in
the corpus. They were obtained as follows:

1) A code fragment (i.e., a sequence of instructions) that
consists of m instructions is selected randomly from the
corpus. This is repeated 100,000 times. The obtained
fragments are denoted as c1, c2, . . ., c100,000.

2) The artificiality values of these code fragments, A(c1),
A(c2), . . ., A(c100,000) are calculated.

3) We measure the average and the standard deviation of
A(c1), A(c2), . . ., A(c100,000), which are denoted as
Acorpus(m) and σ(m), respectively.

We measured Acorpus(m) and σ(m), varying m from 40 to
320 in intervals of 10. In Fig. 9, the solid line shows Acorpus

and the dotted lines show Acorpus + 2σ and Acorpus − 2σ,
which were obtained by the method of least squares. The
original code Co, the optimized code and many obfuscated
code are within Acorpus ± 2σ. However, some obfuscated
code, such as Cjunk, Ccamf , Ccamfs , Ccrypt , and Caes , are
not within Acorpus ± 2σ.

Co Copt1 Copt2 Copts Crep Cinter Cflat Cjunk Cenca Cencd CcamfCcamfs Cswap Ccrypt Caes

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

R
=

A
rt
if
ic
ia
li
ty

/
A

co
rp
u
s

0.87 0.82 0.91

1.45

1.08
0.95 1.01

1.65

1.05 1.00

2.20

1.59

1.29

1.86

3.84

Fig. 10. Ratio between artificiality and Acorpus (N = 3)

In addition, as seen in Fig. 9, artificiality A(C) is highly
dependent on the number of opcodes in the code. To facilitate
a comparison of artificiality, we introduce the normalized
artificiality R(C), which is the ratio between artificiality and
Acorpus:

R(C) =
A(C)

Acorpus(length(C))
(4)

where length(C) is the number of opcodes of C. Fig. 10
shows R(C) for each evaluation target in the case N = 3. We
can see from this graph that R(Cjunk), R(Ccamf), R(Ccamfs),
R(Ccrypt), and R(Caes) are relatively large.

D. Analysis

In many cases, the artificiality of optimized code and code
obfuscated by static obfuscation differs little from A(Co),
regardless of N . This is because the transformations applied
to the code leave many code fragments of the program
unchanged. The artificiality of Cinter , which was obfuscated
by static obfuscation, seems larger than that of other code
obfuscated statically (Fig. 8). This is because the number
of opcodes in Cinter is large, because the code includes
an interpreter engine. From the results shown in Fig. 9 and
Fig. 10, we can see that Cinter is not so artificial if we take
into account the number of opcodes. In contrast, from Fig. 9
and Fig. 10, Cjunk tends to be artificial. We believe that the
inserted meaningless instructions increase the unusualness of
the code.

From the results shown in Fig. 8, Fig. 9, and Fig. 10, it
can be seen that most code subjected to dynamic obfuscation
tends to be artificial. First, the artificiality of the camouflaged
code Ccamf is high. This is because some instructions are
overwritten with dummy instructions, which increases unusual
code fragments. The artificiality of Ccamfs is not particularly
high in comparison with Ccamf . This is because Ccamfs has
fewer unusual code fragments, as the dummy instructions are

selected from Co, which consists of common instructions.
This fact is useful in selecting dummy instructions when
camouflaging the code. The artificiality of Ccrypt is also
high, because parts of the code are XORed and encrypted,
which produce many unusual code fragments. The artificiality
of Caes , which is entirely encrypted, is very high, as the
disassembled code is meaningless as assembly code.

The results of this case study show that optimization and
static obfuscating transformations (e.g., replacing with fun-
damental instructions, embedding a specialized interpreter,
flattening control flow and encoding arithmetic/data) have little
effect on artificiality. However, dynamic obfuscating transfor-
mations (e.g., instruction camouflage and code encryption), or
a technique that inserts junk code fragments into the program,
tend to increase the artificiality, which may have a significant
impact on the stealth of the code.

E. Discussion

We next discuss three potential issues with our experimental
design.

First of all, our case study uses only one target program, a
small, artificial, prototypical cracking target [1]. The reason
is that many of the transformations had to be applied by
hand, since appropriate obfuscation tools do not exist in
the open community, and hence applying the transformations
to multiple targets would have been too time-consuming.
In future work our goal is to obfuscate various types of
programs containing different types of security sensitive code,
and examine the resulting code artificiality.

Second, we ignored operands in our N-gram model. Thus,
code fragments which are artificial due only to unique
operands will not be detected. For example, we cannot detect
unusual branch addresses which may be caused by the control-
flow obfuscation or instruction camouflage. In future work
we intend to extend our N-gram model to take operands
(especially branch addresses) into account. It would be in-
teresting to, for each branch, classify it as direct/indirect,

forward/backward or conditional/unconditional in the N-grams
to see if such features can help detect flattened code and other
control-flow transforms.

Third, for most of the methods we applied the obfuscating
transformations by hand. It is possible that the level of
artificiality may be affected by the person who obfuscates the
program. To avoid such bias in the experimental results, we
are actively developing an appropriate automatic obfuscation
tool, Tigress [11], [14]. We believe that varying the amount
of obfuscation added by the tool can make the results more
interesting.

IV. RELATED WORK

Some methods for evaluating the difficulties of program
analysis have been proposed. For example, the program
complexity metric [16] and queue-based mental simulation
model [17] are used to quantify the difficulty of understanding
a program. There is also a study which aims to assess the
difficulty of understanding and modifying obfuscated code
through controlled experiments involving human subjects [18].
In addition, a survey reported in [19] investigates the effec-
tiveness of dynamic obfuscation methods using visibility and
exposure metrics. The proposed method aims to measure the
stealth of code, which has not been discussed before.

The technique of analyzing the machine code based on
a probabilistic approach such as N-grams has been used in
studies that aim to detect or classify malware. Karim et al.
proposed a method for measuring the similarity of malware
based on the cosine similarity of N-grams of opcodes [20].
In addition, Lyda et al. developed a method for identifying
malware that is packed or encrypted using the entropy of
machine code [21]. These methods quantitatively evaluate the
low-level characteristics of code, in common with the proposed
method. Whereas previous methods use these characteristics to
judge the state or similarity of malware, the proposed method
exploits them to measure the artificiality of code, which is
needed to evaluate the stealth of protected code.

V. CONCLUSION

This paper proposes a method for evaluating the artificiality
of protected code by means of an N-gram model. The proposed
evaluation method estimates one aspect of the stealth of
protected code, that is, the degree to which protected code
can be distinguished from unprotected code.

In the case study, we applied the proposed method to
evaluate the artificiality of various programs that had been
obfuscated by well-known obfuscation techniques. The results
showed that static obfuscating transformations (e.g., trans-
formation of the control flow of the program) have little
effect on artificiality. On the other hand, dynamic obfuscating
transformations (e.g., code encryption), or a technique that
inserts junk code fragments, tend to increase the artificiality,
making a significant impact on the stealth of the code.

We are currently developing an obfuscation tool that auto-
matically outputs variant obfuscated programs. This tool will
allow us to conduct further case studies that consider multiple

input programs and take into account both opcodes and
operands. We will furthermore extend our study to measure
stealth based on dynamic traces of obfuscated programs. Try-
ing a different disassembler which uses the recursive traversal
technique would also be interesting.

ACKNOWLEDGMENT

This work was supported by Grant-in-Aid for Scientific
Research (Grant Number 26330094), Japan Society for the
Promotion of Science (JSPS).

REFERENCES

[1] C. Collberg and J. Nagra, Surreptitious Software: Obfuscation, Water-
marking, and Tamperproofing for Program Protection. Addison-Wesley
Professional, 2009.

[2] Intel 64 and IA-32 Architectures software developer’s manual vol.1
: Basic Architecture, Intel Corporation, http://www.intel.com/products/
processor/manuals/ (accessed: Jan. 2015).

[3] D. Jurafsky and J. H. Martin, Speech and Language Processing, 2nd ed.
Pearson Prentice Hall, 2008.

[4] “The Cygwin project,” http://www.cygwin.com/, (accessed: Jan. 2015).
[5] “GNU binary utilities,” https://sourceware.org/binutils/docs/binutils/,

(accessed: Jan. 2015).
[6] “SRILM – the SRI language modeling toolkit,” http://www.speech.sri.

com/projects/srilm/, (accessed: Jan. 2015).
[7] Free Software Foundation, “GCC online documentation,” http://gcc.gnu.

org/onlinedocs/, (accessed: Jan. 2015).
[8] M. Mambo, T. Murayama, and E. Okamoto, “A tentative approach

to constructing tamper-resistant software,” in Proc. 1997 New Security
Paradigm Workshop, Sep. 1997, pp. 23–33.

[9] C. Wang, J. Hill, J. C. Knight, and J. W. Davidson, “Protection of
software-based survivability mechanisms,” in Proc. 2001 International
Conference on Dependable Systems and Networks, 2001, pp. 193–202.

[10] C. Linn and S. Debray, “Obfuscation of executable code to improve
resistance to static disassembly,” in Proc. 10th ACM Conference on
Computer and Communications Security, Oct. 2003, pp. 290–299.

[11] C. Collberg, “The Tigress diversifying C virtualizer,” http://tigress.cs.
arizona.edu/, (accessed: Jan. 2015).

[12] Y. Kanzaki, A. Monden, M. Nakamura, and K. Matsumoto, “Exploiting
self-modification mechanism for program protection,” in Proc. 27th
IEEE Computer Software and Applications Conference, Dallas, USA,
Nov. 2003, pp. 170–179.

[13] D. W. Aucsmith, Tamper Resistant Software: An Implementation, ser.
Lecture Notes in Computer Science. Springer-Verlag, 1996, vol. 1174,
pp. 317–333.

[14] C. Collberg, S. Martin, J. Myers, and J. Nagra, “Distributed application
tamper detection via continuous software updates,” in Proc. 28th Annual
Computer Security Applications Conference, Orlando, Florida, Dec.
2012, pp. 319–328.

[15] H. S. Warren, Hacker’s Delight (2nd Edition). Addison-Wesley
Professional, 2012.

[16] C. Collberg, C. Thomborson, and D. Low, “A taxonomy of obfuscat-
ing transformations,” Technical Report of Dept. of Computer Science,
University of Auckland, New Zealand, Tech. Rep. 148, 1997.

[17] M. Nakamura, A. Monden, T. Itoh, K. Matsumoto, Y. Kanzaki, and
H. Satoh, “Queue-based cost evaluation of mental simulation process
in program comprehension,” in Proc. 9th IEEE International Software
Metrics Symposium (METRICS2003), Sep. 2003, pp. 351–360.

[18] M. Ceccato, M. Di Penta, J. Nagra, P. Falcarin, F. Ricca, M. Torchiano,
and P. Tonella, “Towards experimental evaluation of code obfuscation
techniques,” in Proc. the 4th ACM Workshop on Quality of Protection,
Alexandria, Virginia, USA, 2008, pp. 39–46.

[19] N. Mavrogiannopoulos, N. Kisserli, and B. Preneel, “A taxonomy of
self-modifying code for obfuscation,” Computers & Security, vol. 30,
no. 8, pp. 679–691, 2011.

[20] M. E. Karim, A. Walenstein, A. Lakhotia, and L. Parida, “Malware
phylogeny generation using permutations of code,” European Research
Journal of Computer Virology, vol. 1, no. 1-2, pp. 13–22, Nov. 2005.

[21] R. Lyda and J. Hamrock, “Using entropy analysis to find encrypted and
packed malware,” IEEE Security and Privacy, vol. 5, no. 2, pp. 40–45,
2007.

